ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14402
14
3

A mean curvature flow arising in adversarial training

22 April 2024
Leon Bungert
Tim Laux
Kerrek Stinson
    AAML
ArXivPDFHTML
Abstract

We connect adversarial training for binary classification to a geometric evolution equation for the decision boundary. Relying on a perspective that recasts adversarial training as a regularization problem, we introduce a modified training scheme that constitutes a minimizing movements scheme for a nonlocal perimeter functional. We prove that the scheme is monotone and consistent as the adversarial budget vanishes and the perimeter localizes, and as a consequence we rigorously show that the scheme approximates a weighted mean curvature flow. This highlights that the efficacy of adversarial training may be due to locally minimizing the length of the decision boundary. In our analysis, we introduce a variety of tools for working with the subdifferential of a supremal-type nonlocal total variation and its regularity properties.

View on arXiv
Comments on this paper