ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15967
19
0

Interpretable Clustering with the Distinguishability Criterion

24 April 2024
Ali Turfah
Xiaoquan Wen
ArXivPDFHTML
Abstract

Cluster analysis is a popular unsupervised learning tool used in many disciplines to identify heterogeneous sub-populations within a sample. However, validating cluster analysis results and determining the number of clusters in a data set remains an outstanding problem. In this work, we present a global criterion called the Distinguishability criterion to quantify the separability of identified clusters and validate inferred cluster configurations. Our computational implementation of the Distinguishability criterion corresponds to the Bayes risk of a randomized classifier under the 0-1 loss. We propose a combined loss function-based computational framework that integrates the Distinguishability criterion with many commonly used clustering procedures, such as hierarchical clustering, k-means, and finite mixture models. We present these new algorithms as well as the results from comprehensive data analysis based on simulation studies and real data applications.

View on arXiv
Comments on this paper