ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16115
28
2

Online Personalizing White-box LLMs Generation with Neural Bandits

24 April 2024
Zekai Chen
Weeden Daniel
Po-yu Chen
Francois Buet-Golfouse
ArXivPDFHTML
Abstract

The advent of personalized content generation by LLMs presents a novel challenge: how to efficiently adapt text to meet individual preferences without the unsustainable demand of creating a unique model for each user. This study introduces an innovative online method that employs neural bandit algorithms to dynamically optimize soft instruction embeddings based on user feedback, enhancing the personalization of open-ended text generation by white-box LLMs. Through rigorous experimentation on various tasks, we demonstrate significant performance improvements over baseline strategies. NeuralTS, in particular, leads to substantial enhancements in personalized news headline generation, achieving up to a 62.9% improvement in terms of best ROUGE scores and up to 2.76% increase in LLM-agent evaluation against the baseline.

View on arXiv
Comments on this paper