ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16206
23
0

Knowledge Graph Completion using Structural and Textual Embeddings

24 April 2024
S. Alqaaidi
Krzysztof J. Kochut
ArXivPDFHTML
Abstract

Knowledge Graphs (KGs) are widely employed in artificial intelligence applications, such as question-answering and recommendation systems. However, KGs are frequently found to be incomplete. While much of the existing literature focuses on predicting missing nodes for given incomplete KG triples, there remains an opportunity to complete KGs by exploring relations between existing nodes, a task known as relation prediction. In this study, we propose a relations prediction model that harnesses both textual and structural information within KGs. Our approach integrates walks-based embeddings with language model embeddings to effectively represent nodes. We demonstrate that our model achieves competitive results in the relation prediction task when evaluated on a widely used dataset.

View on arXiv
Comments on this paper