ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.17169
19
8

FairGT: A Fairness-aware Graph Transformer

26 April 2024
Renqiang Luo
Huafei Huang
Shuo Yu
Xiuzhen Zhang
Feng Xia
ArXivPDFHTML
Abstract

The design of Graph Transformers (GTs) generally neglects considerations for fairness, resulting in biased outcomes against certain sensitive subgroups. Since GTs encode graph information without relying on message-passing mechanisms, conventional fairness-aware graph learning methods cannot be directly applicable to address these issues. To tackle this challenge, we propose FairGT, a Fairness-aware Graph Transformer explicitly crafted to mitigate fairness concerns inherent in GTs. FairGT incorporates a meticulous structural feature selection strategy and a multi-hop node feature integration method, ensuring independence of sensitive features and bolstering fairness considerations. These fairness-aware graph information encodings seamlessly integrate into the Transformer framework for downstream tasks. We also prove that the proposed fair structural topology encoding with adjacency matrix eigenvector selection and multi-hop integration are theoretically effective. Empirical evaluations conducted across five real-world datasets demonstrate FairGT's superiority in fairness metrics over existing graph transformers, graph neural networks, and state-of-the-art fairness-aware graph learning approaches.

View on arXiv
Comments on this paper