ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.18530
28
2

Solving Partial Differential Equations with Equivariant Extreme Learning Machines

29 April 2024
Hans Harder
Jean Rabault
Ricardo Vinuesa
Mikael Mortensen
Sebastian Peitz
ArXivPDFHTML
Abstract

We utilize extreme-learning machines for the prediction of partial differential equations (PDEs). Our method splits the state space into multiple windows that are predicted individually using a single model. Despite requiring only few data points (in some cases, our method can learn from a single full-state snapshot), it still achieves high accuracy and can predict the flow of PDEs over long time horizons. Moreover, we show how additional symmetries can be exploited to increase sample efficiency and to enforce equivariance.

View on arXiv
Comments on this paper