ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.18736
21
4

Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle

29 April 2024
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
ArXivPDFHTML
Abstract

The widespread use of artificial intelligence (AI) systems across various domains is increasingly surfacing issues related to algorithmic fairness, especially in high-stakes scenarios. Thus, critical considerations of how fairness in AI systems might be improved -- and what measures are available to aid this process -- are overdue. Many researchers and policymakers see explainable AI (XAI) as a promising way to increase fairness in AI systems. However, there is a wide variety of XAI methods and fairness conceptions expressing different desiderata, and the precise connections between XAI and fairness remain largely nebulous. Besides, different measures to increase algorithmic fairness might be applicable at different points throughout an AI system's lifecycle. Yet, there currently is no coherent mapping of fairness desiderata along the AI lifecycle. In this paper, we we distill eight fairness desiderata, map them along the AI lifecycle, and discuss how XAI could help address each of them. We hope to provide orientation for practical applications and to inspire XAI research specifically focused on these fairness desiderata.

View on arXiv
Comments on this paper