ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.02301
30
0

TFCounter:Polishing Gems for Training-Free Object Counting

12 March 2024
Pan Ting
Jianfeng Lin
Wenhao Yu
Wenlong Zhang
Xiaoying Chen
Jinlu Zhang
Binqiang Huang
ArXivPDFHTML
Abstract

Object counting is a challenging task with broad application prospects in security surveillance, traffic management, and disease diagnosis. Existing object counting methods face a tri-fold challenge: achieving superior performance, maintaining high generalizability, and minimizing annotation costs. We develop a novel training-free class-agnostic object counter, TFCounter, which is prompt-context-aware via the cascade of the essential elements in large-scale foundation models. This approach employs an iterative counting framework with a dual prompt system to recognize a broader spectrum of objects varying in shape, appearance, and size. Besides, it introduces an innovative context-aware similarity module incorporating background context to enhance accuracy within messy scenes. To demonstrate cross-domain generalizability, we collect a novel counting dataset named BIKE-1000, including exclusive 1000 images of shared bicycles from Meituan. Extensive experiments on FSC-147, CARPK, and BIKE-1000 datasets demonstrate that TFCounter outperforms existing leading training-free methods and exhibits competitive results compared to trained counterparts.

View on arXiv
Comments on this paper