ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.02810
19
2

Adaptive deep density approximation for stochastic dynamical systems

5 May 2024
Junjie He
Qifeng Liao
Xiaoliang Wan
ArXivPDFHTML
Abstract

In this paper we consider adaptive deep neural network approximation for stochastic dynamical systems. Based on the Liouville equation associated with the stochastic dynamical systems, a new temporal KRnet (tKRnet) is proposed to approximate the probability density functions (PDFs) of the state variables. The tKRnet gives an explicit density model for the solution of the Liouville equation, which alleviates the curse of dimensionality issue that limits the application of traditional grid based numerical methods. To efficiently train the tKRnet, an adaptive procedure is developed to generate collocation points for the corresponding residual loss function, where samples are generated iteratively using the approximate density function at each iteration. A temporal decomposition technique is also employed to improve the long-time integration. Theoretical analysis of our proposed method is provided, and numerical examples are presented to demonstrate its performance.

View on arXiv
Comments on this paper