ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.03677
24
3

Towards A Human-in-the-Loop LLM Approach to Collaborative Discourse Analysis

6 May 2024
Clayton Cohn
Caitlin Snyder
Justin Montenegro
Gautam Biswas
ArXivPDFHTML
Abstract

LLMs have demonstrated proficiency in contextualizing their outputs using human input, often matching or beating human-level performance on a variety of tasks. However, LLMs have not yet been used to characterize synergistic learning in students' collaborative discourse. In this exploratory work, we take a first step towards adopting a human-in-the-loop prompt engineering approach with GPT-4-Turbo to summarize and categorize students' synergistic learning during collaborative discourse. Our preliminary findings suggest GPT-4-Turbo may be able to characterize students' synergistic learning in a manner comparable to humans and that our approach warrants further investigation.

View on arXiv
Comments on this paper