Automating enterprise workflows could unlock 4trillion/yearinproductivitygains.Despitebeingofinteresttothedatamanagementcommunityfordecades,theultimatevisionofend−to−endworkflowautomationhasremainedelusive.Currentsolutionsrelyonprocessminingandroboticprocessautomation(RPA),inwhichabotishard−codedtofollowasetofpredefinedrulesforcompletingaworkflow.ThroughcasestudiesofahospitalandlargeB2Benterprise,wefindthattheadoptionofRPAhasbeeninhibitedbyhighset−upcosts(12−18months),unreliableexecution(60maintenance(requiringmultipleFTEs).Multimodalfoundationmodels(FMs)suchasGPT−4offerapromisingnewapproachforend−to−endworkflowautomationgiventheirgeneralizedreasoningandplanningabilities.TostudythesecapabilitiesweproposeECLAIR,asystemtoautomateenterpriseworkflowswithminimalhumansupervision.WeconductinitialexperimentsshowingthatmultimodalFMscanaddressthelimitationsoftraditionalRPAwith(1)near−human−levelunderstandingofworkflows(93understandingtask)and(2)instantset−upwithminimaltechnicalbarrier(basedsolelyonanaturallanguagedescriptionofaworkflow,ECLAIRachievesend−to−endcompletionratesof40validation,andself−improvementasopenchallenges,andsuggestwaystheycanbesolvedwithdatamanagementtechniques.Codeisavailableat:https://github.com/HazyResearch/eclair−agents
View on arXiv