ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.03974
23
2

TBNet: A Neural Architectural Defense Framework Facilitating DNN Model Protection in Trusted Execution Environments

7 May 2024
Ziyu Liu
Tong Zhou
Yukui Luo
Xiaolin Xu
ArXivPDFHTML
Abstract

Trusted Execution Environments (TEEs) have become a promising solution to secure DNN models on edge devices. However, the existing solutions either provide inadequate protection or introduce large performance overhead. Taking both security and performance into consideration, this paper presents TBNet, a TEE-based defense framework that protects DNN model from a neural architectural perspective. Specifically, TBNet generates a novel Two-Branch substitution model, to respectively exploit (1) the computational resources in the untrusted Rich Execution Environment (REE) for latency reduction and (2) the physically-isolated TEE for model protection. Experimental results on a Raspberry Pi across diverse DNN model architectures and datasets demonstrate that TBNet achieves efficient model protection at a low cost.

View on arXiv
Comments on this paper