28
372

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

DeepSeek-AI
Aixin Liu
Bei Feng
Bin Wang
Bingxuan Wang
Bo Liu
Chenggang Zhao
Chengqi Dengr
Chong Ruan
Damai Dai
Daya Guo
Dejian Yang
Deli Chen
Dongjie Ji
Erhang Li
Fangyun Lin
Fuli Luo
Guangbo Hao
Guanting Chen
Guowei Li
Hai-Tao Zhang
Hanwei Xu
Hao-Yu Yang
Haowei Zhang
Honghui Ding
Huajian Xin
Huazuo Gao
Hui Li
Hui Qu
J. L. Cai
Jian Liang
Jianzhong Guo
Jiaqi Ni
Jiashi Li
Jin Chen
Jingyang Yuan
Junjie Qiu
Junxiao Song
Kai Dong
Kaige Gao
Kang Guan
Lean Wang
Lecong Zhang
Lei Xu
Leyi Xia
Liang Zhao
Liyue Zhang
Meng Li
Miaojun Wang
Mingchuan Zhang
Minghua Zhang
Minghui Tang
Mingming Li
Ning Tian
Panpan Huang
Peiyi Wang
Peng Zhang
Qihao Zhu
Qinyu Chen
Qiushi Du
R. J. Chen
R. L. Jin
Ruiqi Ge
Ruizhe Pan
Runxin Xu
Ruyi Chen
S. S. Li
Shanghao Lu
Shangyan Zhou
Shanhuang Chen
Shaoqing Wu
Shengfeng Ye
Shirong Ma
Shiyu Wang
Shuang Zhou
Shuiping Yu
Shunfeng Zhou
Size Zheng
Tao Wang
Tian Pei
Tian Yuan
Tianyu Sun
W. L. Xiao
Wangding Zeng
Wei An
Wen Liu
Wenfeng Liang
Wenjun Gao
Wentao Zhang
X. Q. Li
Xiangyue Jin
Xianzu Wang
Xiao Bi
Xiaodong Liu
Xiaohan Wang
Xiaojin Shen
Xiaokang Chen
Xiaosha Chen
Xiaotao Nie
Xiaowen Sun
Xiaoxiang Wang
Xin Liu
Xin Xie
Xingkai Yu
Xinnan Song
Xinyi Zhou
Xinyu Yang
Xuan Lu
Xuecheng Su
Ying Wu
Y. K. Li
Y. X. Wei
Y. X. Zhu
Yanhong Xu
Yanping Huang
Yao Li
Yao-Min Zhao
Yaofeng Sun
Yaohui Li
Yaohui Wang
Yi Zheng
Yichao Zhang
Yiliang Xiong
Yilong Zhao
Ying He
Ying Tang
Yishi Piao
Yixin Dong
Yixuan Tan
Yiyuan Liu
Yongji Wang
Yongqiang Guo
Yuchen Zhu
Yuduan Wang
Yuheng Zou
Yukun Zha
Yunxian Ma
Yuting Yan
Yuxiang You
Yuxuan Liu
Z. Z. Ren
Zehui Ren
Zhangli Sha
Zhe Fu
Zhen Huang
Zhen Zhang
Zhenda Xie
Zhewen Hao
Zhihong Shao
Zhiniu Wen
Zhipeng Xu
Zhongyu Zhang
Zhuoshu Li
Zihan Wang
Zihui Gu
Zilin Li
Ziwei Xie
Abstract

We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.

View on arXiv
Comments on this paper