ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.04538
32
0

DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models

15 March 2024
Fred M. Grabovski
Lior Yasur
Yaniv Hacmon
Lior Nisimov
Stav Nimrod
    DiffM
ArXivPDFHTML
Abstract

This study explores the generation of synthesized fingerprint images using Denoising Diffusion Probabilistic Models (DDPMs). The significant obstacles in collecting real biometric data, such as privacy concerns and the demand for diverse datasets, underscore the imperative for synthetic biometric alternatives that are both realistic and varied. Despite the strides made with Generative Adversarial Networks (GANs) in producing realistic fingerprint images, their limitations prompt us to propose DDPMs as a promising alternative. DDPMs are capable of generating images with increasing clarity and realism while maintaining diversity. Our results reveal that DiffFinger not only competes with authentic training set data in quality but also provides a richer set of biometric data, reflecting true-to-life variability. These findings mark a promising stride in biometric synthesis, showcasing the potential of DDPMs to advance the landscape of fingerprint identification and authentication systems.

View on arXiv
Comments on this paper