ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.04912
  4. Cited By
GP-MoLFormer: A Foundation Model For Molecular Generation
v1v2 (latest)

GP-MoLFormer: A Foundation Model For Molecular Generation

Digital Discovery (DD), 2024
4 April 2024
Jerret Ross
Brian M. Belgodere
Samuel C. Hoffman
Vijil Chenthamarakshan
Youssef Mroueh
Payel Das
Payel Das
ArXiv (abs)PDFHTML

Papers citing "GP-MoLFormer: A Foundation Model For Molecular Generation"

41 / 41 papers shown
Title
ChemOrch: Empowering LLMs with Chemical Intelligence via Synthetic Instructions
ChemOrch: Empowering LLMs with Chemical Intelligence via Synthetic Instructions
Yue Huang
Zhengzhe Jiang
Xiaonan Luo
Kehan Guo
Haomin Zhuang
...
Shuhao Zhang
Mihir Surve
Nitesh Chawla
Olaf Wiest
Xiangliang Zhang
SyDaAI4CE
36
0
0
20 Sep 2025
NovoMolGen: Rethinking Molecular Language Model Pretraining
NovoMolGen: Rethinking Molecular Language Model Pretraining
Kamran Chitsaz
Roshan Balaji
Quentin Fournier
Nirav Pravinbhai Bhatt
Sarath Chandar
AI4CE
144
0
0
19 Aug 2025
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Bradley Brown
Jordan Juravsky
Ryan Ehrlich
Ronald Clark
Quoc V. Le
Christopher Ré
Azalia Mirhoseini
ALMLRM
518
526
0
03 Jan 2025
Conditional Latent Space Molecular Scaffold Optimization for Accelerated Molecular Design
Conditional Latent Space Molecular Scaffold Optimization for Accelerated Molecular Design
O. Boyar
Hiroyuki Hanada
I. Takeuchi
BDL
172
0
0
03 Nov 2024
A Large Encoder-Decoder Family of Foundation Models For Chemical
  Language
A Large Encoder-Decoder Family of Foundation Models For Chemical Language
Eduardo Soares
Victor Shirasuna
E. V. Brazil
Renato F. G. Cerqueira
Dmitry Zubarev
Kristin Schmidt
AI4CE
176
12
0
24 Jul 2024
Large language models, physics-based modeling, experimental
  measurements: the trinity of data-scarce learning of polymer properties
Large language models, physics-based modeling, experimental measurements: the trinity of data-scarce learning of polymer properties
Ning Liu
S. Jafarzadeh
B. Lattimer
Shuna Ni
Jim Lua
Yue Yu
AI4CE
148
3
0
03 Jul 2024
Domain-Agnostic Molecular Generation with Chemical Feedback
Domain-Agnostic Molecular Generation with Chemical FeedbackInternational Conference on Learning Representations (ICLR), 2023
Yin Fang
Ningyu Zhang
Zhuo Chen
Lingbing Guo
Xiaohui Fan
Huajun Chen
253
21
0
26 Jan 2023
Group SELFIES: A Robust Fragment-Based Molecular String Representation
Group SELFIES: A Robust Fragment-Based Molecular String RepresentationDigital Discovery (DD), 2022
Austin H. Cheng
Andy Cai
Santiago Miret
Gustavo Malkomes
Mariano Phielipp
Alán Aspuru-Guzik
151
38
0
23 Nov 2022
LIMO: Latent Inceptionism for Targeted Molecule Generation
LIMO: Latent Inceptionism for Targeted Molecule GenerationInternational Conference on Machine Learning (ICML), 2022
Peter Eckmann
Kunyang Sun
Bo Zhao
Mudong Feng
Michael K. Gilson
Rose Yu
BDL
148
53
0
17 Jun 2022
Memorization Without Overfitting: Analyzing the Training Dynamics of
  Large Language Models
Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language ModelsNeural Information Processing Systems (NeurIPS), 2022
Kushal Tirumala
Aram H. Markosyan
Luke Zettlemoyer
Armen Aghajanyan
TDI
191
233
0
22 May 2022
Quantifying Memorization Across Neural Language Models
Quantifying Memorization Across Neural Language ModelsInternational Conference on Learning Representations (ICLR), 2022
Nicholas Carlini
Daphne Ippolito
Matthew Jagielski
Katherine Lee
Florian Tramèr
Chiyuan Zhang
PILM
280
741
0
15 Feb 2022
Scaling Laws for Neural Machine Translation
Scaling Laws for Neural Machine Translation
Behrooz Ghorbani
Orhan Firat
Markus Freitag
Ankur Bapna
M. Krikun
Xavier Garcia
Ciprian Chelba
Colin Cherry
148
125
0
16 Sep 2021
Deduplicating Training Data Makes Language Models Better
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
522
732
0
14 Jul 2021
Large-Scale Chemical Language Representations Capture Molecular
  Structure and Properties
Large-Scale Chemical Language Representations Capture Molecular Structure and PropertiesNature Machine Intelligence (Nat. Mach. Intell.), 2021
Jerret Ross
Brian M. Belgodere
Vijil Chenthamarakshan
Inkit Padhi
Youssef Mroueh
Payel Das
AI4CE
190
391
0
17 Jun 2021
Augmenting Molecular Deep Generative Models with Topological Data
  Analysis Representations
Augmenting Molecular Deep Generative Models with Topological Data Analysis RepresentationsIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Yair Schiff
Vijil Chenthamarakshan
Samuel C. Hoffman
Karthikeyan N. Ramamurthy
Payel Das
MedIm
159
10
0
08 Jun 2021
RoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position Embedding
Jianlin Su
Yu Lu
Shengfeng Pan
Ahmed Murtadha
Bo Wen
Yunfeng Liu
645
3,483
0
20 Apr 2021
MARS: Markov Molecular Sampling for Multi-objective Drug Discovery
MARS: Markov Molecular Sampling for Multi-objective Drug DiscoveryInternational Conference on Learning Representations (ICLR), 2021
Yutong Xie
Chence Shi
Hao Zhou
Yuwei Yang
Weinan Zhang
Yong Yu
Lei Li
172
166
0
18 Mar 2021
MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
MolGrow: A Graph Normalizing Flow for Hierarchical Molecular GenerationAAAI Conference on Artificial Intelligence (AAAI), 2021
Maksim Kuznetsov
Daniil Polykovskiy
142
52
0
03 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph GenerationInternational Conference on Machine Learning (ICML), 2021
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
364
233
0
01 Feb 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language ModelsUSENIX Security Symposium (USENIX Security), 2020
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAUSILM
932
2,317
0
14 Dec 2020
Rethinking Attention with Performers
Rethinking Attention with Performers
K. Choromanski
Valerii Likhosherstov
David Dohan
Xingyou Song
Andreea Gane
...
Afroz Mohiuddin
Lukasz Kaiser
David Belanger
Lucy J. Colwell
Adrian Weller
524
1,840
0
30 Sep 2020
Transformers are RNNs: Fast Autoregressive Transformers with Linear
  Attention
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
Angelos Katharopoulos
Apoorv Vyas
Nikolaos Pappas
Franccois Fleuret
554
2,151
0
29 Jun 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural MotifsInternational Conference on Machine Learning (ICML), 2020
Wengong Jin
Regina Barzilay
Tommi Jaakkola
218
322
0
08 Feb 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
1.4K
6,160
0
23 Jan 2020
Improved Precision and Recall Metric for Assessing Generative Models
Improved Precision and Recall Metric for Assessing Generative Models
Tuomas Kynkaanniemi
Tero Karras
S. Laine
J. Lehtinen
Timo Aila
EGVM
323
1,007
0
15 Apr 2019
Mol-CycleGAN - a generative model for molecular optimization
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
145
267
0
06 Feb 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
282
245
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
480
733
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular DesignJournal of Chemical Information and Modeling (JCIM), 2018
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
241
784
0
22 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical
  Reaction Prediction
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction PredictionACS Central Science (ACS Cent. Sci.), 2018
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
260
823
0
06 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
288
586
0
19 Oct 2018
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
232
218
0
07 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
625
951
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNNGAN
405
1,000
0
30 May 2018
Fréchet ChemNet Distance: A metric for generative models for molecules
  in drug discovery
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
Günter Klambauer
MedIm
317
381
0
26 Mar 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
197
341
0
24 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
782
1,497
0
12 Feb 2018
Attention Is All You Need
Attention Is All You NeedNeural Information Processing Systems (NeurIPS), 2017
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
2.0K
152,933
0
12 Jun 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
301
1,101
0
25 Apr 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDLDRL
257
891
0
06 Mar 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of moleculesACS Central Science (ACS Cent. Sci.), 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
498
3,151
0
07 Oct 2016
1