ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.05277
16
1

An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems

3 May 2024
Mayra Alexandra Macas Carrasco
Chunming Wu
Walter Fuertes
ArXivPDFHTML
Abstract

Anomaly detection is critical for the secure and reliable operation of industrial control systems. As our reliance on such complex cyber-physical systems grows, it becomes paramount to have automated methods for detecting anomalies, preventing attacks, and responding intelligently. {This paper presents a novel deep generative model to meet this need. The proposed model follows a variational autoencoder architecture with a convolutional encoder and decoder to extract features from both spatial and temporal dimensions. Additionally, we incorporate an attention mechanism that directs focus towards specific regions, enhancing the representation of relevant features and improving anomaly detection accuracy. We also employ a dynamic threshold approach leveraging the reconstruction probability and make our source code publicly available to promote reproducibility and facilitate further research. Comprehensive experimental analysis is conducted on data from all six stages of the Secure Water Treatment (SWaT) testbed, and the experimental results demonstrate the superior performance of our approach compared to several state-of-the-art baseline techniques.

View on arXiv
Comments on this paper