ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.05424
20
0

Latent Variable Double Gaussian Process Model for Decoding Complex Neural Data

8 May 2024
Navid Ziaei
Joshua J. Stim
Melanie D. Goodman-Keiser
S. Sponheim
A. Widge
Sasoun Krikorian
Ali Yousefi
ArXivPDFHTML
Abstract

Non-parametric models, such as Gaussian Processes (GP), show promising results in the analysis of complex data. Their applications in neuroscience data have recently gained traction. In this research, we introduce a novel neural decoder model built upon GP models. The core idea is that two GPs generate neural data and their associated labels using a set of low- dimensional latent variables. Under this modeling assumption, the latent variables represent the underlying manifold or essential features present in the neural data. When GPs are trained, the latent variable can be inferred from neural data to decode the labels with a high accuracy. We demonstrate an application of this decoder model in a verbal memory experiment dataset and show that the decoder accuracy in predicting stimulus significantly surpasses the state-of-the-art decoder models. The preceding performance of this model highlights the importance of utilizing non-parametric models in the analysis of neuroscience data.

View on arXiv
Comments on this paper