ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.05455
26
1

Automated Program Repair: Emerging trends pose and expose problems for benchmarks

8 May 2024
J. Renzullo
Pemma Reiter
Westley Weimer
Stephanie Forrest
ArXivPDFHTML
Abstract

Machine learning (ML) now pervades the field of Automated Program Repair (APR). Algorithms deploy neural machine translation and large language models (LLMs) to generate software patches, among other tasks. But, there are important differences between these applications of ML and earlier work. Evaluations and comparisons must take care to ensure that results are valid and likely to generalize. A challenge is that the most popular APR evaluation benchmarks were not designed with ML techniques in mind. This is especially true for LLMs, whose large and often poorly-disclosed training datasets may include problems on which they are evaluated.

View on arXiv
Comments on this paper