
Many videogames suffer "review bombing" -a large volume of unusually low scores that in many cases do not reflect the real quality of the product- when rated by users. By taking Metacritic's 50,000+ user score aggregations for PC games in English language, we use a Natural Language Processing (NLP) approach to try to understand the main words and concepts appearing in such cases, reaching a 0.88 accuracy on a validation set when distinguishing between just bad ratings and review bombings. By uncovering and analyzing the patterns driving this phenomenon, these results could be used to further mitigate these situations.
View on arXiv