ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.07090
19
9

MUD: Towards a Large-Scale and Noise-Filtered UI Dataset for Modern Style UI Modeling

11 May 2024
Sidong Feng
Suyu Ma
Han Wang
David Kong
Chunyang Chen
ArXivPDFHTML
Abstract

The importance of computational modeling of mobile user interfaces (UIs) is undeniable. However, these require a high-quality UI dataset. Existing datasets are often outdated, collected years ago, and are frequently noisy with mismatches in their visual representation. This presents challenges in modeling UI understanding in the wild. This paper introduces a novel approach to automatically mine UI data from Android apps, leveraging Large Language Models (LLMs) to mimic human-like exploration. To ensure dataset quality, we employ the best practices in UI noise filtering and incorporate human annotation as a final validation step. Our results demonstrate the effectiveness of LLMs-enhanced app exploration in mining more meaningful UIs, resulting in a large dataset MUD of 18k human-annotated UIs from 3.3k apps. We highlight the usefulness of MUD in two common UI modeling tasks: element detection and UI retrieval, showcasing its potential to establish a foundation for future research into high-quality, modern UIs.

View on arXiv
Comments on this paper