ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.08275
16
0

Power of ℓ1\ell_1ℓ1​-Norm Regularized Kaczmarz Algorithms for High-Order Tensor Recovery

14 May 2024
Katherine Henneberger
Jing Qin
ArXivPDFHTML
Abstract

Tensors serve as a crucial tool in the representation and analysis of complex, multi-dimensional data. As data volumes continue to expand, there is an increasing demand for developing optimization algorithms that can directly operate on tensors to deliver fast and effective computations. Many problems in real-world applications can be formulated as the task of recovering high-order tensors characterized by sparse and/or low-rank structures. In this work, we propose novel Kaczmarz algorithms with a power of the ℓ1\ell_1ℓ1​-norm regularization for reconstructing high-order tensors by exploiting sparsity and/or low-rankness of tensor data. In addition, we develop both a block and an accelerated variant, along with a thorough convergence analysis of these algorithms. A variety of numerical experiments on both synthetic and real-world datasets demonstrate the effectiveness and significant potential of the proposed methods in image and video processing tasks, such as image sequence destriping and video deconvolution.

View on arXiv
Comments on this paper