ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11427
16
0

Quantum Neural Networks for Solving Power System Transient Simulation Problem

19 May 2024
Mohammadreza Soltaninia
Junpeng Zhan
ArXivPDFHTML
Abstract

Quantum computing, leveraging principles of quantum mechanics, represents a transformative approach in computational methodologies, offering significant enhancements over traditional classical systems. This study tackles the complex and computationally demanding task of simulating power system transients through solving differential algebraic equations (DAEs). We introduce two novel Quantum Neural Networks (QNNs): the Sinusoidal-Friendly QNN and the Polynomial-Friendly QNN, proposing them as effective alternatives to conventional simulation techniques. Our application of these QNNs successfully simulates two small power systems, demonstrating their potential to achieve good accuracy. We further explore various configurations, including time intervals, training points, and the selection of classical optimizers, to optimize the solving of DAEs using QNNs. This research not only marks a pioneering effort in applying quantum computing to power system simulations but also expands the potential of quantum technologies in addressing intricate engineering challenges.

View on arXiv
Comments on this paper