ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12139
20
16

DTLLM-VLT: Diverse Text Generation for Visual Language Tracking Based on LLM

20 May 2024
Xuchen Li
Xiaokun Feng
Shiyu Hu
Meiqi Wu
Dailing Zhang
Jing Zhang
Kaiqi Huang
    VLM
ArXivPDFHTML
Abstract

Visual Language Tracking (VLT) enhances single object tracking (SOT) by integrating natural language descriptions from a video, for the precise tracking of a specified object. By leveraging high-level semantic information, VLT guides object tracking, alleviating the constraints associated with relying on a visual modality. Nevertheless, most VLT benchmarks are annotated in a single granularity and lack a coherent semantic framework to provide scientific guidance. Moreover, coordinating human annotators for high-quality annotations is laborious and time-consuming. To address these challenges, we introduce DTLLM-VLT, which automatically generates extensive and multi-granularity text to enhance environmental diversity. (1) DTLLM-VLT generates scientific and multi-granularity text descriptions using a cohesive prompt framework. Its succinct and highly adaptable design allows seamless integration into various visual tracking benchmarks. (2) We select three prominent benchmarks to deploy our approach: short-term tracking, long-term tracking, and global instance tracking. We offer four granularity combinations for these benchmarks, considering the extent and density of semantic information, thereby showcasing the practicality and versatility of DTLLM-VLT. (3) We conduct comparative experiments on VLT benchmarks with different text granularities, evaluating and analyzing the impact of diverse text on tracking performance. Conclusionally, this work leverages LLM to provide multi-granularity semantic information for VLT task from efficient and diverse perspectives, enabling fine-grained evaluation of multi-modal trackers. In the future, we believe this work can be extended to more datasets to support vision datasets understanding.

View on arXiv
Comments on this paper