ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12295
30
1

Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks

20 May 2024
Marcin Podhajski
Jan Dubiñski
Franziska Boenisch
Adam Dziedzic
Agnieszka Pregowska
Tomasz Michalak
ArXivPDFHTML
Abstract

Graph Neural Networks (GNNs) are recognized as potent tools for processing real-world data organized in graph structures. Especially inductive GNNs, which enable the processing of graph-structured data without relying on predefined graph structures, are gaining importance in an increasingly wide variety of applications. As these networks demonstrate proficiency across a range of tasks, they become lucrative targets for model-stealing attacks where an adversary seeks to replicate the functionality of the targeted network. A large effort has been made to develop model-stealing attacks that focus on models trained with images and texts. However, little attention has been paid to GNNs trained on graph data. This paper introduces a novel method for unsupervised model-stealing attacks against inductive GNNs, based on graph contrasting learning and spectral graph augmentations to efficiently extract information from the target model. The proposed attack is thoroughly evaluated on six datasets. The results show that this approach demonstrates a higher level of efficiency compared to existing stealing attacks. More concretely, our attack outperforms the baseline on all benchmarks achieving higher fidelity and downstream accuracy of the stolen model while requiring fewer queries sent to the target model.

View on arXiv
Comments on this paper