ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12838
24
0

Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits

21 May 2024
Jiachen Hu
Tongyang Li
Xinzhao Wang
Yecheng Xue
Chenyi Zhang
Han Zhong
ArXivPDFHTML
Abstract

We systematically investigate quantum algorithms and lower bounds for mean estimation given query access to non-identically distributed samples. On the one hand, we give quantum mean estimators with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm to achieve quadratic speed-up over the number of classical samples needed to estimate the mean μ\muμ, where the samples come from different random variables with mean close to μ\muμ. Technically, our quantum algorithms reduce bounded and sub-Gaussian random variables to the Bernoulli case, and use an uncomputation trick to overcome the challenge that direct amplitude estimation does not work with non-identical query access. Our quantum query lower bounds are established by simulating non-identical oracles by parallel oracles, and also by an adversarial method with non-identical oracles. Both results pave the way for proving quantum query lower bounds with non-identical oracles in general, which may be of independent interest.

View on arXiv
Comments on this paper