ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12957
26
0

Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models

17 May 2024
Rudolf Herdt
Louisa Kinzel
Johann Georg Maass
Marvin Walther
Henning Fröhlich
Tim Schubert
Peter Maass
C. Schaaf
ArXivPDFHTML
Abstract

Rodents employ a broad spectrum of ultrasonic vocalizations (USVs) for social communication. As these vocalizations offer valuable insights into affective states, social interactions, and developmental stages of animals, various deep learning approaches have aimed to automate both the quantitative (detection) and qualitative (classification) analysis of USVs. Here, we present the first systematic evaluation of different types of neural networks for USV classification. We assessed various feedforward networks, including a custom-built, fully-connected network and convolutional neural network, different residual neural networks (ResNets), an EfficientNet, and a Vision Transformer (ViT). Paired with a refined, entropy-based detection algorithm (achieving recall of 94.9% and precision of 99.3%), the best architecture (achieving 86.79% accuracy) was integrated into a fully automated pipeline capable of analyzing extensive USV datasets with high reliability. Additionally, users can specify an individual minimum accuracy threshold based on their research needs. In this semi-automated setup, the pipeline selectively classifies calls with high pseudo-probability, leaving the rest for manual inspection. Our study focuses exclusively on neonatal USVs. As part of an ongoing phenotyping study, our pipeline has proven to be a valuable tool for identifying key differences in USVs produced by mice with autism-like behaviors.

View on arXiv
Comments on this paper