ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12986
34
2

A Novel Feature Map Enhancement Technique Integrating Residual CNN and Transformer for Alzheimer Diseases Diagnosis

30 March 2024
Saddam Hussain Khan
    MedIm
ArXivPDFHTML
Abstract

Alzheimer diseases (ADs) involves cognitive decline and abnormal brain protein accumulation, necessitating timely diagnosis for effective treatment. Therefore, CAD systems leveraging deep learning advancements have demonstrated success in AD detection but pose computational intricacies and the dataset minor contrast, structural, and texture variations. In this regard, a novel hybrid FME-Residual-HSCMT technique is introduced, comprised of residual CNN and Transformer concepts to capture global and local fine-grained AD analysis in MRI. This approach integrates three distinct elements: a novel CNN Meet Transformer (HSCMT), customized residual learning CNN, and a new Feature Map Enhancement (FME) strategy to learn diverse morphological, contrast, and texture variations of ADs. The proposed HSCMT at the initial stage utilizes stem convolution blocks that are integrated with CMT blocks followed by systematic homogenous and structural (HS) operations. The customized CMT block encapsulates each element with global contextual interactions through multi-head attention and facilitates computational efficiency through lightweight. Moreover, inverse residual and stem CNN in customized CMT enables effective extraction of local texture information and handling vanishing gradients. Furthermore, in the FME strategy, residual CNN blocks utilize TL-based generated auxiliary and are combined with the proposed HSCMT channels at the target level to achieve diverse enriched feature space. Finally, diverse enhanced channels are fed into a novel spatial attention mechanism for optimal pixel selection to reduce redundancy and discriminate minor contrast and texture inter-class variation. The proposed achieves an F1-score (98.55%), an accuracy of 98.42% and a sensitivity of 98.50%, a precision of 98.60% on the standard Kaggle dataset, and demonstrates outperformance existing ViTs and CNNs methods.

View on arXiv
Comments on this paper