ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13045
28
2

CoLay: Controllable Layout Generation through Multi-conditional Latent Diffusion

18 May 2024
Chin-Yi Cheng
Ruiqi Gao
Forrest Huang
Yang Li
    DiffM
ArXivPDFHTML
Abstract

Layout design generation has recently gained significant attention due to its potential applications in various fields, including UI, graphic, and floor plan design. However, existing models face two main challenges that limits their adoption in practice. Firstly, the limited expressiveness of individual condition types used in previous works restricts designers' ability to convey complex design intentions and constraints. Secondly, most existing models focus on generating labels and coordinates, while real layouts contain a range of style properties. To address these limitations, we propose a novel framework, CoLay, that integrates multiple condition types and generates complex layouts with diverse style properties. Our approach outperforms prior works in terms of generation quality and condition satisfaction while empowering users to express their design intents using a flexible combination of modalities, including natural language prompts, layout guidelines, element types, and partially completed designs.

View on arXiv
Comments on this paper