19
10

GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation

Abstract

Research on jailbreaking has been valuable for testing and understanding the safety and security issues of large language models (LLMs). In this paper, we introduce Iterative Refinement Induced Self-Jailbreak (IRIS), a novel approach that leverages the reflective capabilities of LLMs for jailbreaking with only black-box access. Unlike previous methods, IRIS simplifies the jailbreaking process by using a single model as both the attacker and target. This method first iteratively refines adversarial prompts through self-explanation, which is crucial for ensuring that even well-aligned LLMs obey adversarial instructions. IRIS then rates and enhances the output given the refined prompt to increase its harmfulness. We find IRIS achieves jailbreak success rates of 98% on GPT-4 and 92% on GPT-4 Turbo in under 7 queries. It significantly outperforms prior approaches in automatic, black-box and interpretable jailbreaking, while requiring substantially fewer queries, thereby establishing a new standard for interpretable jailbreaking methods.

View on arXiv
Comments on this paper