ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13101
25
5

Evaluating AI-generated code for C++, Fortran, Go, Java, Julia, Matlab, Python, R, and Rust

21 May 2024
Patrick Diehl
Noujoud Nader
Steven R. Brandt
Hartmut Kaiser
    ELM
ArXivPDFHTML
Abstract

This study evaluates the capabilities of ChatGPT versions 3.5 and 4 in generating code across a diverse range of programming languages. Our objective is to assess the effectiveness of these AI models for generating scientific programs. To this end, we asked ChatGPT to generate three distinct codes: a simple numerical integration, a conjugate gradient solver, and a parallel 1D stencil-based heat equation solver. The focus of our analysis was on the compilation, runtime performance, and accuracy of the codes. While both versions of ChatGPT successfully created codes that compiled and ran (with some help), some languages were easier for the AI to use than others (possibly because of the size of the training sets used). Parallel codes -- even the simple example we chose to study here -- also difficult for the AI to generate correctly.

View on arXiv
Comments on this paper