ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13816
19
0

Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners

22 May 2024
Shimao Zhang
Changjiang Gao
Wenhao Zhu
Jiajun Chen
Xin Huang
Xue Han
Junlan Feng
Chao Deng
Shujian Huang
ArXivPDFHTML
Abstract

Recently, Large Language Models (LLMs) have shown impressive language capabilities. While most of the existing LLMs have very unbalanced performance across different languages, multilingual alignment based on translation parallel data is an effective method to enhance the LLMs' multilingual capabilities. In this work, we discover and comprehensively investigate the spontaneous multilingual alignment improvement of LLMs. We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages, even including those unseen during instruction-tuning. Additionally, we utilize different settings and mechanistic interpretability methods to analyze the LLM's performance in the multilingual scenario comprehensively. Our work suggests that LLMs have enormous potential for improving multilingual alignment efficiently with great language and task generalization.

View on arXiv
Comments on this paper