ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14430
44
8

PipeFusion: Displaced Patch Pipeline Parallelism for Inference of Diffusion Transformer Models

23 May 2024
Jiannan Wang
Jiarui Fang
Aoyu Li
PengCheng Yang
    AI4CE
ArXivPDFHTML
Abstract

This paper introduces PipeFusion, a novel approach that harnesses multi-GPU parallelism to address the high computational and latency challenges of generating high-resolution images with diffusion transformers (DiT) models. PipeFusion splits images into patches and distributes the network layers across multiple devices. It employs a pipeline parallel manner to orchestrate communication and computations. By leveraging the high similarity between the input from adjacent diffusion steps, PipeFusion eliminates the waiting time in the pipeline by reusing the one-step stale feature maps to provide context for the current step. Our experiments demonstrate that it can generate higher image resolution where existing DiT parallel approaches meet OOM. PipeFusion significantly reduces the required communication bandwidth, enabling DiT inference to be hosted on GPUs connected via PCIe rather than the more costly NVLink infrastructure, which substantially lowers the overall operational expenses for serving DiT models. Our code is publicly available at https://github.com/PipeFusion/PipeFusion.

View on arXiv
Comments on this paper