Implicit In-context Learning

In-context Learning (ICL) empowers large language models (LLMs) to swiftly adapt to unseen tasks at inference-time by prefixing a few demonstration examples before queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is sensitive to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that reduces the inference cost of ICL to that of zero-shot learning with minimal information loss. I2CL operates by first generating a condensed vector representation, namely a context vector, extracted from the demonstration examples. It then conducts an inference-time intervention through injecting a linear combination of the context vector and query activations back into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot level performance at zero-shot inference cost, and it exhibits robustness against variations in demonstration examples. Furthermore, I2CL facilitates a novel representation of task-ids, enhancing task similarity detection and fostering effective transfer learning. We also perform a comprehensive analysis and ablation study on I2CL, offering deeper insights into its internal mechanisms. Code is available atthis https URL.
View on arXiv@article{li2025_2405.14660, title={ Implicit In-context Learning }, author={ Zhuowei Li and Zihao Xu and Ligong Han and Yunhe Gao and Song Wen and Di Liu and Hao Wang and Dimitris N. Metaxas }, journal={arXiv preprint arXiv:2405.14660}, year={ 2025 } }