ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14858
18
19

Mamba-R: Vision Mamba ALSO Needs Registers

23 May 2024
Feng Wang
Jiahao Wang
Sucheng Ren
Guoyizhe Wei
Jieru Mei
Wei Shao
Yuyin Zhou
Alan L. Yuille
Cihang Xie
    Mamba
ArXivPDFHTML
Abstract

Similar to Vision Transformers, this paper identifies artifacts also present within the feature maps of Vision Mamba. These artifacts, corresponding to high-norm tokens emerging in low-information background areas of images, appear much more severe in Vision Mamba -- they exist prevalently even with the tiny-sized model and activate extensively across background regions. To mitigate this issue, we follow the prior solution of introducing register tokens into Vision Mamba. To better cope with Mamba blocks' uni-directional inference paradigm, two key modifications are introduced: 1) evenly inserting registers throughout the input token sequence, and 2) recycling registers for final decision predictions. We term this new architecture Mamba-R. Qualitative observations suggest, compared to vanilla Vision Mamba, Mamba-R's feature maps appear cleaner and more focused on semantically meaningful regions. Quantitatively, Mamba-R attains stronger performance and scales better. For example, on the ImageNet benchmark, our base-size Mamba-R attains 82.9% accuracy, significantly outperforming Vim-B's 81.8%; furthermore, we provide the first successful scaling to the large model size (i.e., with 341M parameters), attaining a competitive accuracy of 83.2% (84.5% if finetuned with 384x384 inputs). Additional validation on the downstream semantic segmentation task also supports Mamba-R's efficacy.

View on arXiv
Comments on this paper