ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16051
112
0

A Bi-Objective Approach to Last-Mile Delivery Routing Considering Driver Preferences

25 May 2024
J. Mesa
Alejandro Montoya
Raul Ramos-Pollán
M. Toro
ArXiv (abs)PDFHTML
Abstract

The Multi-Objective Vehicle Routing Problem (MOVRP) is a complex optimization problem in the transportation and logistics industry. This paper proposes a novel approach to the MOVRP that aims to create routes that consider drivers' and operators' decisions and preferences. We evaluate two approaches to address this objective: visually attractive route planning and data mining of historical driver behavior to plan similar routes. Using a real-world dataset provided by Amazon, we demonstrate that data mining of historical patterns is more effective than visual attractiveness metrics found in the literature. Furthermore, we propose a bi-objective problem to balance the similarity of routes to historical routes and minimize routing costs. We propose a two-stage GRASP algorithm with heuristic box splitting to solve this problem. The proposed algorithm aims to approximate the Pareto front and to present routes that cover a wide range of the objective function space. The results demonstrate that our approach can generate a small number of non-dominated solutions per instance, which can help decision-makers to identify trade-offs between routing costs and drivers' preferences. Our approach has the potential to enhance the last-mile delivery operations of logistics companies by balancing these conflicting objectives.

View on arXiv
Comments on this paper