ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16598
23
0

Regularized Projection Matrix Approximation with Applications to Community Detection

26 May 2024
Zheng Zhai
Mingxin Wu
Xiaohui Li
ArXivPDFHTML
Abstract

This paper introduces a regularized projection matrix approximation framework aimed at recovering cluster information from the affinity matrix. The model is formulated as a projection approximation problem incorporating an entrywise penalty function. We explore three distinct penalty functions addressing bounded, positive, and sparse scenarios, respectively, and derive the Alternating Direction Method of Multipliers (ADMM) algorithm to solve the problem. Then, we provide a theoretical analysis establishing the convergence properties of the proposed algorithm. Extensive numerical experiments on both synthetic and real-world datasets demonstrate that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in terms of clustering performance.

View on arXiv
Comments on this paper