ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16951
16
2

Fast ML-driven Analog Circuit Layout using Reinforcement Learning and Steiner Trees

27 May 2024
Davide Basso
Luca Bortolussi
Mirjana Videnovic-Misic
Husni M. Habal
ArXivPDFHTML
Abstract

This paper presents an artificial intelligence driven methodology to reduce the bottleneck often encountered in the analog ICs layout phase. We frame the floorplanning problem as a Markov Decision Process and leverage reinforcement learning for automatic placement generation under established topological constraints. Consequently, we introduce Steiner tree-based methods for the global routing step and generate guiding paths to be used to connect every circuit block. Finally, by integrating these solutions into a procedural generation framework, we present a unified pipeline that bridges the divide between circuit design and verification steps. Experimental results demonstrate the efficacy in generating complete layouts, eventually reducing runtimes to 1.5% compared to manual efforts.

View on arXiv
Comments on this paper