Deep Bayesian Filter for Bayes-faithful Data Assimilation

State estimation for nonlinear state space models is a challenging task. Existing assimilation methodologies predominantly assume Gaussian posteriors on physical space, where true posteriors become inevitably non-Gaussian. We propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear state space models (SSMs). DBF constructs new latent variables on a new latent (``fancy'') space and assimilates observations . By (i) constraining the state transition on fancy space to be linear and (ii) learning a Gaussian inverse observation operator , posteriors always remain Gaussian for DBF. Quite distinctively, the structured design of posteriors provides an analytic formula for the recursive computation of posteriors without accumulating Monte-Carlo sampling errors over time steps. DBF seeks the Gaussian inverse observation operators and other latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower bound. Experiments show that DBF outperforms model-based approaches and latent assimilation methods in various tasks and conditions.
View on arXiv