ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18831
14
2

Evaluating Zero-Shot GPT-4V Performance on 3D Visual Question Answering Benchmarks

29 May 2024
Simranjit Singh
Georgios Pavlakos
Dimitrios Stamoulis
ArXivPDFHTML
Abstract

As interest in "reformulating" the 3D Visual Question Answering (VQA) problem in the context of foundation models grows, it is imperative to assess how these new paradigms influence existing closed-vocabulary datasets. In this case study, we evaluate the zero-shot performance of foundational models (GPT-4 Vision and GPT-4) on well-established 3D VQA benchmarks, namely 3D-VQA and ScanQA. We provide an investigation to contextualize the performance of GPT-based agents relative to traditional modeling approaches. We find that GPT-based agents without any fine-tuning perform on par with the closed vocabulary approaches. Our findings corroborate recent results that "blind" models establish a surprisingly strong baseline in closed-vocabulary settings. We demonstrate that agents benefit significantly from scene-specific vocabulary via in-context textual grounding. By presenting a preliminary comparison with previous baselines, we hope to inform the community's ongoing efforts to refine multi-modal 3D benchmarks.

View on arXiv
Comments on this paper