ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19033
42
1

CiliaGraph: Enabling Expression-enhanced Hyper-Dimensional Computation in Ultra-Lightweight and One-Shot Graph Classification on Edge

29 May 2024
Yuxi Han
Jihe Wang
Danghui Wang
ArXivPDFHTML
Abstract

Graph Neural Networks (GNNs) are computationally demanding and inefficient when applied to graph classification tasks in resource-constrained edge scenarios due to their inherent process, involving multiple rounds of forward and backward propagation. As a lightweight alternative, Hyper-Dimensional Computing (HDC), which leverages high-dimensional vectors for data encoding and processing, offers a more efficient solution by addressing computational bottleneck. However, current HDC methods primarily focus on static graphs and neglect to effectively capture node attributes and structural information, which leads to poor accuracy. In this work, we propose CiliaGraph, an enhanced expressive yet ultra-lightweight HDC model for graph classification. This model introduces a novel node encoding strategy that preserves relative distance isomorphism for accurate node connection representation. In addition, node distances are utilized as edge weights for information aggregation, and the encoded node attributes and structural information are concatenated to obtain a comprehensive graph representation. Furthermore, we explore the relationship between orthogonality and dimensionality to reduce the dimensions, thereby further enhancing computational efficiency. Compared to the SOTA GNNs, extensive experiments show that CiliaGraph reduces memory usage and accelerates training speed by an average of 292 times(up to 2341 times) and 103 times(up to 313 times) respectively while maintaining comparable accuracy.

View on arXiv
Comments on this paper