ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19217
25
0

LoByITFL: Low Communication Secure and Private Federated Learning

29 May 2024
Yue Xia
Christoph Hofmeister
Maximilian Egger
Rawad Bitar
ArXivPDFHTML
Abstract

Federated Learning (FL) faces several challenges, such as the privacy of the clients data and security against Byzantine clients. Existing works treating privacy and security jointly make sacrifices on the privacy guarantee. In this work, we introduce LoByITFL, the first communication-efficient Information-Theoretic (IT) private and secure FL scheme that makes no sacrifices on the privacy guarantees while ensuring security against Byzantine adversaries. The key ingredients are a small and representative dataset available to the federator, a careful transformation of the FLTrust algorithm and the use of a trusted third party only in a one-time preprocessing phase before the start of the learning algorithm. We provide theoretical guarantees on privacy and Byzantine-resilience, and provide convergence guarantee and experimental results validating our theoretical findings.

View on arXiv
Comments on this paper