ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19507
14
0

Data-Efficient Discovery of Hyperelastic TPMS Metamaterials with Extreme Energy Dissipation

29 May 2024
Maxine Perroni-Scharf
Zachary Ferguson
Thomas Butrille
Carlos Portela
Mina Konaković Luković
ArXivPDFHTML
Abstract

Triply periodic minimal surfaces (TPMS) are a class of metamaterials with a variety of applications and well-known primitives. We present a new method for discovering novel microscale TPMS structures with exceptional energy-dissipation capabilities, achieving double the energy absorption of the best existing TPMS primitive structure. Our approach employs a parametric representation, allowing seamless interpolation between structures and representing a rich TPMS design space. We show that simulations are intractable for optimizing microscale hyperelastic structures, and instead propose a sample-efficient computational strategy for rapidly discovering structures with extreme energy dissipation using limited amounts of empirical data from 3D-printed and tested microscale metamaterials. This strategy ensures high-fidelity results but involves time-consuming 3D printing and testing. To address this, we leverage an uncertainty-aware Deep Ensembles model to predict microstructure behaviors and identify which structures to 3D-print and test next. We iteratively refine our model through batch Bayesian optimization, selecting structures for fabrication that maximize exploration of the performance space and exploitation of our energy-dissipation objective. Using our method, we produce the first open-source dataset of hyperelastic microscale TPMS structures, including a set of novel structures that demonstrate extreme energy dissipation capabilities. We show several potential applications of these structures in protective equipment and bone implants.

View on arXiv
Comments on this paper