ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19823
23
2

Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection

30 May 2024
Junqi Chen
Xu Tan
S. Rahardja
Jiawei Yang
S. Rahardja
    Mamba
ArXivPDFHTML
Abstract

Deep learning-based sequence models are extensively employed in Time Series Anomaly Detection (TSAD) tasks due to their effective sequential modeling capabilities. However, the ability of TSAD is limited by two key challenges: (i) the ability to model long-range dependency and (ii) the generalization issue in the presence of non-stationary data. To tackle these challenges, an anomaly detector that leverages the selective state space model known for its proficiency in capturing long-term dependencies across various domains is proposed. Additionally, a multi-stage detrending mechanism is introduced to mitigate the prominent trend component in non-stationary data to address the generalization issue. Extensive experiments conducted on realworld public datasets demonstrate that the proposed methods surpass all 12 compared baseline methods.

View on arXiv
Comments on this paper