ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.20042
26
0

CycleFormer : TSP Solver Based on Language Modeling

30 May 2024
Jieun Yook
Junpyo Seo
Joon Huh
Han Joon Byun
Byung Ro Moon
ArXivPDFHTML
Abstract

We propose a new transformer model for the Traveling Salesman Problem (TSP) called CycleFormer. We identified distinctive characteristics that need to be considered when applying a conventional transformer model to TSP and aimed to fully incorporate these elements into the TSP-specific transformer. Unlike the token sets in typical language models, which are limited and static, the token (node) set in TSP is unlimited and dynamic. To exploit this fact to the fullest, we equated the encoder output with the decoder linear layer and directly connected the context vector of the encoder to the decoder encoding. Additionally, we added a positional encoding to the encoder tokens that reflects the two-dimensional nature of TSP, and devised a circular positional encoding for the decoder tokens that considers the cyclic properties of a tour. By incorporating these ideas, CycleFormer outperforms state-of-the-art (SOTA) transformer models for TSP from TSP-50 to TSP-500. Notably, on TSP-500, the optimality gap was reduced by approximately 2.8 times, from 3.09% to 1.10%, compared to the existing SOTA. The code will be made available at https://github.com/Giventicket/CycleFormer.

View on arXiv
Comments on this paper