ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.20909
18
1

Nonparametric regression on random geometric graphs sampled from submanifolds

31 May 2024
Paul Rosa
Judith Rousseau
ArXivPDFHTML
Abstract

We consider the nonparametric regression problem when the covariates are located on an unknown smooth compact submanifold of a Euclidean space. Under defining a random geometric graph structure over the covariates we analyze the asymptotic frequentist behaviour of the posterior distribution arising from Bayesian priors designed through random basis expansion in the graph Laplacian eigenbasis. Under Holder smoothness assumption on the regression function and the density of the covariates over the submanifold, we prove that the posterior contraction rates of such methods are minimax optimal (up to logarithmic factors) for any positive smoothness index.

View on arXiv
Comments on this paper