ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.00025
23
3

SCALM: Towards Semantic Caching for Automated Chat Services with Large Language Models

24 May 2024
Jiaxing Li
Chi Xu
Feng Wang
Isaac M von Riedemann
Cong Zhang
Jiangchuan Liu
    LLMAG
    KELM
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have become increasingly popular, transforming a wide range of applications across various domains. However, the real-world effectiveness of their query cache systems has not been thoroughly investigated. In this work, we for the first time conducted an analysis on real-world human-to-LLM interaction data, identifying key challenges in existing caching solutions for LLM-based chat services. Our findings reveal that current caching methods fail to leverage semantic connections, leading to inefficient cache performance and extra token costs. To address these issues, we propose SCALM, a new cache architecture that emphasizes semantic analysis and identifies significant cache entries and patterns. We also detail the implementations of the corresponding cache storage and eviction strategies. Our evaluations show that SCALM increases cache hit ratios and reduces operational costs for LLMChat services. Compared with other state-of-the-art solutions in GPTCache, SCALM shows, on average, a relative increase of 63% in cache hit ratio and a relative improvement of 77% in tokens savings.

View on arXiv
Comments on this paper