ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.00079
21
2

Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling

31 May 2024
Sili Huang
Jifeng Hu
Zhe Yang
Liwei Yang
Tao Luo
Hechang Chen
Lichao Sun
Bo Yang
    Mamba
ArXivPDFHTML
Abstract

Recent works have shown the remarkable superiority of transformer models in reinforcement learning (RL), where the decision-making problem is formulated as sequential generation. Transformer-based agents could emerge with self-improvement in online environments by providing task contexts, such as multiple trajectories, called in-context RL. However, due to the quadratic computation complexity of attention in transformers, current in-context RL methods suffer from huge computational costs as the task horizon increases. In contrast, the Mamba model is renowned for its efficient ability to process long-term dependencies, which provides an opportunity for in-context RL to solve tasks that require long-term memory. To this end, we first implement Decision Mamba (DM) by replacing the backbone of Decision Transformer (DT). Then, we propose a Decision Mamba-Hybrid (DM-H) with the merits of transformers and Mamba in high-quality prediction and long-term memory. Specifically, DM-H first generates high-value sub-goals from long-term memory through the Mamba model. Then, we use sub-goals to prompt the transformer, establishing high-quality predictions. Experimental results demonstrate that DM-H achieves state-of-the-art in long and short-term tasks, such as D4RL, Grid World, and Tmaze benchmarks. Regarding efficiency, the online testing of DM-H in the long-term task is 28×\times× times faster than the transformer-based baselines.

View on arXiv
Comments on this paper