ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.00410
125
0

Posterior Label Smoothing for Node Classification

1 June 2024
Jaeseung Heo
M. Park
Dongwoo Kim
    UQCV
ArXiv (abs)PDFHTML
Abstract

Soft labels can improve the generalization of a neural network classifier in many domains, such as image classification. Despite its success, the current literature has overlooked the efficiency of label smoothing in node classification with graph-structured data. In this work, we propose a simple yet effective label smoothing for the transductive node classification task. We design the soft label to encapsulate the local context of the target node through the neighborhood label distribution. We apply the smoothing method for seven baseline models to show its effectiveness. The label smoothing methods improve the classification accuracy in 10 node classification datasets in most cases. In the following analysis, we find that incorporating global label statistics in posterior computation is the key to the success of label smoothing. Further investigation reveals that the soft labels mitigate overfitting during training, leading to better generalization performance.

View on arXiv
Comments on this paper