ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.00502
116
2

Non-geodesically-convex optimization in the Wasserstein space

8 January 2025
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
ArXiv (abs)PDFHTML
Abstract

We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is -- to our knowledge -- still unknown in our very general non-geodesically-convex setting.

View on arXiv
Comments on this paper