PruNeRF: Segment-Centric Dataset Pruning via 3D Spatial Consistency

Neural Radiance Fields (NeRF) have shown remarkable performance in learning 3D scenes. However, NeRF exhibits vulnerability when confronted with distractors in the training images -- unexpected objects are present only within specific views, such as moving entities like pedestrians or birds. Excluding distractors during dataset construction is a straightforward solution, but without prior knowledge of their types and quantities, it becomes prohibitively expensive. In this paper, we propose PruNeRF, a segment-centric dataset pruning framework via 3D spatial consistency, that effectively identifies and prunes the distractors. We first examine existing metrics for measuring pixel-wise distraction and introduce Influence Functions for more accurate measurements. Then, we assess 3D spatial consistency using a depth-based reprojection technique to obtain 3D-aware distraction. Furthermore, we incorporate segmentation for pixel-to-segment refinement, enabling more precise identification. Our experiments on benchmark datasets demonstrate that PruNeRF consistently outperforms state-of-the-art methods in robustness against distractors.
View on arXiv